Lattice and Order Properties of the Poset of Regions in a Hyperplane Arrangement

نویسندگان

  • Nathan Reading
  • NATHAN READING
چکیده

We show that the poset of regions (with respect to a canonical base region) of a supersolvable hyperplane arrangement is a congruence normal lattice. Specifically, the poset of regions of a supersolvable arrangement of rank k is obtained via a sequence of doublings from the poset of regions of a supersolvable arrangement of rank k − 1. An explicit description of the doublings leads to a proof that the order dimension of the poset of regions (again with respect to a canonical base region) of a supersolvable hyperplane arrangement is equal to the rank of the arrangement. In particular, the order dimension of the weak order on a finite Coxeter group of type A or B is equal to the number of generators. The result for type A (the permutation lattice) was proven previously by Flath [11]. We show that the poset of regions of a simplicial arrangement is a semi-distributive lattice, using the previously known result [2] that it is a lattice. A lattice is congruence uniform (or “bounded” in the sense of McKenzie [18]) if and only if it is semi-distributive and congruence normal [7]. Caspard, Le Conte de Poly-Barbut and Morvan [4] showed that the weak order on a finite Coxeter group is congruence uniform. Inspired by the methods of [4], we characterize congruence normality of a lattice in terms of edge-labelings. This leads to a simple criterion to determine whether or not a given simplicial arrangement has a congruence uniform lattice of regions. In the case when the criterion is satisfied, we explicitly characterize the congruence lattice of the lattice of regions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Lattice Property of Shard Orders

Let L be a congruence-uniform lattice. In this note, we investigate the shard order on L that was introduced by N. Reading. When L is a poset of regions of a hyperplane arrangement the shard order always is a lattice. For general L, however, this fails. We provide a necessary condition for the shard order to be a lattice, and we show how to construct a congruence-uniform lattice L′ from L such ...

متن کامل

Some Algebraic Properties of the Schechtman–Varchenko Bilinear Forms

We examine a bilinear form associated with a real arrangement of hyperplanes introduced in [Schechtman and Varchenko 1991]. Our main objective is to show that the linear algebraic properties of this bilinear form are related to the combinatorics and topology of the hyperplane arrangement. We will survey results and state a number of open problems which relate the determinant, cokernel structure...

متن کامل

Valid Orderings of Real Hyperplane Arrangements

Given a real finite hyperplane arrangement A and a point p not on any of the hyperplanes, we define an arrangement vo(A, p), called the valid order arrangement, whose regions correspond to the different orders in which a line through p can cross the hyperplanes in A. If A is the set of affine spans of the facets of a convex polytope P and p lies in the interior of P, then the valid orderings wi...

متن کامل

Pointed and multi-pointed partitions of type A and B

The aim of this paper is to define and study pointed and multi-pointed partition posets of type A and B (in the classification of Coxeter groups). We compute their characteristic polynomials, incidence Hopf algebras and homology groups. As a corollary, we show that some operads are Koszul over Z. Introduction For every finite Weyl group W , there exists a generalized partition poset (cf. [2]) d...

متن کامل

The order dimension of the poset of regions in a hyperplane arrangement

We show that the order dimension of the weak order on a Coxeter group of type A, B or D is equal to the rank of the Coxeter group, and give bounds on the order dimensions for the other finite types. This result arises from a unified approach which, in particular, leads to a simpler treatment of the previously known cases, types A and B [8, 13]. The result for weak orders follows from an upper b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002